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One-dimensional bounce of inelastically colliding marbles 
on a wall 

B Bernu and  R Mazighi 
Laboratoire de Physique Theorique des Liquides:, Universite Pierre et Marie Curie 4, 
place Jussieu, 752.52 Paris Cedex 05, France 

Received 2.5 June 1990 

Abstract. n marbles with zero velocity are pushed away by a wall moving at constant 
velocity. The collisions are treated using an inelasticity coefficient 1) and the equations of 
motion are numerically integrated until no more marbles collide with the wall. The principal 
investigated quantity is the relative kinetic energy E ,  of the bounced marbles. A model of 
‘independent collision waves’ is presented which predicts with a good precision the 
maximum of E,  for 7, =2 ’ -”“ -  1, and the value ?*=tan2  n / 4 ( 1  - ( l / n ) )  at which the 
marbles stick to the wall. It is found that, for large n, the only important parameter is 
y = (1  - 7 ) n .  Equivalent results are found when a marble is thrown against the column. 

1. Introduction 

The study of materials which exhibit new and  unconventional properties is of central 
importance in many fields of science. In this connection, there has been a rapidly 
growing interest in granular materials [ 11 and their quite unusual aspects. For instance 
experimental [ 2-51, theoretical and  numerical [6,7] researches about instabilities 
and  segregation phenomenon [ 81, in vibrated particulate matter are recently witnessed. 
Being interested in fluidization phenomenon, our first purpose is a tentative attempt 
to describe a convective regime which holds inside a sandpile that becomes unstable 
under vertical vibrations. More precisely, we want to see if a simulation, based on 
inelastic collisions, can explain this experimentally observed convective motion. 

Granular materials are different from simple fluids in two ways: ( i )  collisions 
between elements in the material or with the walls are inelastic; ( i i )  friction forces are 
present which, for example, are responsible of the angle of repose. We are interested 
in understanding the experiments of vibrated granular media and  especially why and 
how they behave unlike simple fluids. Consequently, we study separately the two effects 
of inelasticity and  friction. This is possible using computer simulations. 

Here we want to test the first effect and  see how inelastic collisions are responsible 
for the dynamical properties of these media. Before going to realistic three-dimensional 
simulation of shaked marbles, we study how a one-dimensional column of marbles 
bounces on a wall in absence of gravity or equivalently how this column is pushed 
away by a wall moving at  constant velocity. Even if we relax ergodicity by reducing 
the dimensionality of the problem, we think that some conclusions will be qualitatively 
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the same in higher dimensions. This work is the first step of a more complete study 
and  already contains interesting features. Notice that this step can be directly used to 
understand what happens when a marble column bounces on  a plane vibrating with 
a period much larger than the bounce duration. Indeed, only the relative motion of 
the closest marble to the plane, with respect to it, is modified by the action of gravity. 

The aim of this paper is to extract the relevant parameters of the system to enhance 
general behaviours of the bounce and to present an analytical model which explains 
the main properties of the bouncing marbles. This paper is organized as follows: section 
2 presents the system and  the relevant parameters. Section 3 is devoted to the numerical 
computation results. Section 4 provides a n  analytical model of independent collision 
waves ( I C W )  and a way of evaluating special values of the inelasticity coefficient: (i) 
r ] ,  is the value at which the relative kinetic energy Ek of the bouncing marbles reaches 
its maximum; (ii) is the value at which all the marbles stick to the wall. A conclusion 
is drawn in the final section. 

2. The inelastically colliding marbles system 

The system under consideration is made u p  of n marbles with radius r, and masses 
m,, disposed on  an  x-axis in absence of external field. At time t = 0, the position of 
the ith marble is x, with x, > x , - ~ ,  its velocity is U,, and the wall is at x, = 0 with a 
velocity U,. In the present study, the marble velocities are restricted to be identical at  
t = 0. Because of the Galilean invariance, one can choose U, = 0 and  U,( t = 0) = - Vo 
(with x, > 0) or equivalently U, = Vo and U,( t = 0) = 0. The separation E ,  between the 
marbles i and i - 1 is defined as E ,  = x, - x , - ~  - r, - r , - l .  In one dimension, the equations 
of motion do not depend on  the marble radius, so only the separations E ,  are relevant. 
At t = 0, these quantities are chosen as: 

E ,  = 6iA (1) 

where 6, is a random number in [0, 11. A natural timescale is given by r = A/ Vo and 
changing A or V, results in changing the timescale 7; so Vo and A ,  in arbitrary units, 
have been kept fixed to 1. In the elastic case (7 = l ) ,  the bounce duration of the marble 
column is given by r,=Z:=, E , / V ~ = X Y = ,  ~ , A / V o = n r / 2 .  

The dynamics depends on the marble masses. We have investigated the case of 
marbles with the identical masses mo, referred hereafter as case I ,  and the case of 
marbles with slightly distinct masses m, = mo( 1 + t : 6 ) ,  where 6 ranges between 
and  lo-’ and  5: is a random number in [-1, 11, case referred hereafter as case 11. 

defined as: 
The different collisions are characterized by the same inelasticity coefficient r] 

v:= -7v, ( 2 )  

where V, and V :  are the relative velocities between two marbles just before and  just 
after a collision. The same coefficient is used for the collision between the wall and 
the first marble. The loss of kinetic energy in each collision is then $ p (  r]’ - 1)  V t  , where 
p is the reduced mass. The values of r] range in the interval [0, 11 where the lower 
and  upper limits correspond respectively to a collision without bouncing (i.e. sticking 
collision) and  to an  elastic one. The collisions are considered as instantaneous and  
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treated via standard collision matrices Cl-,,,  between 
has: 

/L 1 - 7 7 )  

\ 2  

colliding marbles on a wall 5141 

marbles i - 1 and  i ;  in case I one 

for i = 2 ,  n (3) 

and  the collision matrix between the wall and  the first marble is: 

Co.,=( 1+77  rl "). ( 4 )  

For given values of n, r] and initial separations { e , } ,  we let the system evolve until 
U, > U,, for all i ,  which ensures that no more collisions with the wall are possible. This 
final state choice is rather arbitrary and  other final states are compared in the following. 
Then, several quantities are investigated for the bouncing column: the number No of 
collisions between the wall and the first marble, the total number NT of collisions, the 
mean final separation E / ,  the velocity V,, of the centre of mass, the bounce duration 
r,,, the relative kinetic energy Ek of the marbles, the first moments of the relative 
velocity distribution function. All these quantities are evaluated by statistical averages 
over initial separations (and mass distribution in case II), and  standard deviations are 
calculated. 

3. Numerical simulations and results 

The numerical simulations follow the rules of hard spheres simulations. First, the time 
t ,  at which marbles i - 1 and  i collide is calculated as: 

These times are stored in a table T,. The main part of the simulation is a loop over 
the collisions. One picks up, in the table T,, the minimum time t,,, which corresponds 
to the collision say j - 1 and  j .  All the marbles evolve as free particles for the time 
t,,, , and at  this time the collision between j - 1 and j is treated via the matrix defined 
in equations (3) and  ( 4 ) .  Then t, is set to infinity, t , - ,  and r,,, are recalculated with 
the new velocities ( 5 ) .  The loop over the collisions is stopped when the minimum of 
the marble velocities is greater than the wall velocity. Figure 1 shows the trajectories 
of five identical marbles with the same initial separations ( E ,  = 1) for various values 
of 77. For each marble number n and inelasticity coefficient 77, a thousand of random 
initial separations are used. In case 11, masses and  initial separations are chosen at 
random simultaneously. 

The variations of N, (q )  and N , ( T )  versus 77 are similar, both are monotonous 
increasing functions as 77 decreases. In the quasi-elastic regime (7 = l) ,  they are almost 
constant and  equal to the elastic case I values: N, , (v )  = n and N T ( ~ )  = n ( n  + 1)/2. 
Both No(r))  and N T ( ~ )  diverge when goes to a value rlZ which depends on n and 
very little on the mass distributions we used (the ratio N , / ( n N o )  is always less than 
one). For 7 < v 2 ,  the marbles stick to the wall, that means the velocities decrease 
exponentially with the collision number. 
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In the quasi-elastic regime, T ~ (  r ] )  is almost constant and  equal to the elastic value 
T,  = n 7 / 2 ,  and the final distribution ~ ~ ( 7 )  is the same as the initial one. All the marbles 
are ejected with close velocities. At smaller r] ,  if other collisions are needed to complete 
the bounce, they arise at  a much larger time (&, /V,<< -&,/(U, - U,-])), and q , ( r ] )  and 
E~ ( r ] )  increase suddenly. 

The variations of V,, decrease monotonically as r] decreases also. In case I ,  for 
r] = 1, V,,  = V, in the wall referencial, whereas its value goes to zero as r] goes to r ] r .  

In case 11, the variations are essentially the same. 
The most interesting quantities to look at are the relative kinetic energy and the 

velocity distribution function after the bounce. The relative kinetic energy is defined as: 

In case I, for t7 = 1 and  7 < r],(n) this relative kinetic energy is zero. In the interval 
[ r ] * ,  11 this function reaches a maximum at r] = v l .  In case 11, the variations of E k ( r ] )  
are the same, with the same coefficients r ] ,  and r]* (see table l ) ,  but Ek(7) increases 
again as 7 approaches 1. We also checked the first moments of the velocity distribution 
function and  found that in all cases they never approach those of a Maxwellian one, 
which in other words means that no thermalization occurs. 

Table 1. Position 7, and value ET”” (in units of m,,V;) of the relative kinetic energy 
maximum versus the marble number n ;  q 2 :  value at which the marbles stay stuck to the 
wall; ICW: independent collision wave model; case I:  identical marbles; case 11: different 
mass marbles (with S = 0.05). Data for both cases I and I1 are from numerical simulations. 

’71 10) E n 7 2  3 E,lnaS’ 

n ICW case I case 11 case I case 11 ICW case I case 11 case 11 

2 
3 
4 
5 
6 
7 

I O  
15 
20 
30 
50 

100 

0.4142 
0.5874 
0.6818 
0.741 1 
0.7818 
0.8114 
0.8661 
0.9097 
0.9319 
0.9543 
0.9725 
0.9861 

0.415 
0.586 
0.685 
0.742 
0.782 
0.814 
0.867 
0.910 
0.932 
0.952 
0.971 
0.985 

0.446 
0.603 
0.696 
0.744 
0.783 
0.8 12 
0.866 
0.909 
0.93 1 
0.954 
0.972 
0.987 

7.3 6.2 
7.0 6.2 
6.7 6.2 
6.7 6.2 
6.6 6.3 
6.4 6.2 
6.4 6.3 
6.4 6.3 
6.3 6.3 
6.4 6.2 
6.5 6.1 
6.6 5.6 

0.1716 
0.3333 
0.4465 
0.5279 
0.5888 
0.6360 
0.7295 
0.8107 
0.8545 
0.9005 
0.9391 
0.9691 

0.172 
0.339 
0.454 
0.534 
0.594 
0.639 
0.725 
0.800 
0.857 
0.902 
0.944 
0.972 

0.177 1.01 
0.339 1.09 
0.455 1.03 
0.536 1.12 
0.595 1 .08 
0.640 1.32 
0.725 1.17 
0.801 1.35 
0.845 1.44 
0.897 1.80 
0.943 2.70 
0.971 6.60 

So the numerical simulations show two phenomenological inelasticity coefficients: 
(i) at 77’, No and NT diverge, the marbles stick to the wall and  the total relative kinetic 
energy vanishes (for 7 > v2 the marbles rebound); ( i i )  7, gives the maximum of E k ( 7 ) .  
The main conclusion of the numerical results is that the phenomenological coefficients 
r ] ,  and r]t  depend very little on the mass distribution. Then it is of interest to study 
the case I analytically. This is the object of next section. 
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4. The independent collision waves (ICW) model 

Here, we propose to study a model which reproduces with a good approximation some 
of the properties of Ek( 7). When the wall shocks the first marble, then the first marble 
will shock the second one and  so on: this will be called here a collision wave. These 
collision waves are easily observed in figure 1. 

0 5 10 15 1 2 3  
Time 

Figure 1. Set of five marbles trajectories corresponding to four values of the inelasticity 
parameter with same initial separations. The upper ( a )  (respectively ( h ) )  quadrant is 
relative to t) = 0.8> t), (respectively v3 < t) = 0.7 < 7,) and the lower ( c )  (respectively ( d ) )  
one corresponds to v2 < 7 = 0.662 < v3 (respectively 17 = 0.55 = v2) .  Time is in units o f  T. 
(A ) ,  (B) and ( C )  refer to different final state times defined in section 4. 

Let X ,  be the transfer matrix that gives the velocities after the pass of the collision 
wave in terms of the velocities before the collision wave. This matrix is an ordered 
product of binary collision ( n  + 1) x ( n  + 1) matrices C,,,,, defined as in equation (3) 
for lines and  columns i, i+  1 and identity matrix elsewhere: 

For the case of two marbles the collisions are always ordered: after a collision 
between the wall and 1, the next collision is between 1 and 2 ,  collision followed by 
another one which is between the wall and 1, and  so on until the two marble velocities 
are larger than Vo.  Then, for two marbles the velocity distribution does not depend 
on the initial separations e , .  For n > 2 ,  this is not true and  the effect of changing the 
initial separations is to change the collision order [6]; but the collision order will not 
change the final velocity distribution, except when two consecutive matrices are 
permuted because they d o  not commute in this case. However, i t  is possible to rearrange 
the matrix order to exhibit the X ,  collision wave matrix, except when two waves 
interact as it is the case when a wave catches up  a previous one. In the numerical 
simulation, at a given time, several waves propagate together and  sometimes two waves 
interact: for example, in figure I ( c )  we see that the second wave catches up the first 
one, whereas the waves propagate independently in figure l ( a ) ,  ( b ) .  
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The independent collision waves ( ICW) model neglects these wave interactions and 
allows us, as we shall see in the following, to give mathematical definitions to the 
'critical' coefficients 77, which agree very well with the phenomenological ones. 

4.1. Evaluation of q, (n)  for identical masses 

We have defined 77 ,  by the position of the E , ( v )  maximum, but this definition leads 
to a very complicated calculation; then, we use another very simple one: 771 is the 
solution of U,( 7 7 )  = U,. after the first wave. This equation is equivalent to X , [ n  + 1, 13 = 
2u" = 1, where Y = (1 + 77)/2, and gives: 

q , ( n )  = 2I-l'" - 1. (8) 

In order to understand why this value is close to E r a x  position, let us remark that two 
competitive effects are present: ( i )  when 77 decreases from 1, the velocities are different 
from each other after the bounce, so E k ( ~ )  increases; ( i i )  when the collision number 
increases, Ek( 7 )  decreases since after every collision the relative velocity decreases by 
the 7 factor (equation 2). Then a qualitative difference appears when the last marble 
is not ejected (i.e. U, < uw,)  after the first wave: see figure l ( a ) ,  ( b ) .  Table 1 provides 
a comparison of v l  between this model and  the simulation data. Note that this model 
is also in agreement with the results of case 11. For large n, we have vl( n )  - 1 -2  l n (2 ) /n .  

4.2. Evaluation of V2(n) for identical masses 

The calculation of qz is straightforward for two identical marbles. One calculates the 
eigenvalues of X ,  and finds that for 77 > v z = 3 - 2 f i - 0 . 1 7 1 6  there are two complex 
conjugate eigenvalues of modulus 77 and for 77 < 772 there are two positive real eigen- 
values A -  E [0, 771 and  A, = v2/A- E [ T ,  13. X z  can be decomposed as: 

X z  acts on the two-dimensional marble velocity space and  9 is a rotation. If the initial 
condition is the point Ao= ( -Vo ,  -Vo) and the wall velocity is zero, the successive 
actions of X z  give a sequence of points A,. When one point A, reaches the upper right 
quadrant, no  more collisions occur between the wall and the marbles. do, has an  
effective action of rotating OAo by a positive angle ( 7 7  < 1) which competes with the 
pure reaction 9-n14. When the eigenvalues are complex, the pure rotation wins and 
the sequence reaches the upper right quadrant. When real eigenvalues appear, the 
vector OA, can be projected on the two eigenvectors which are in  the first upper right 
quadrant and  since the two eigenvalues are less than 1, the sequence converges towards 
the origin, i.e., the marbles stick to the wall. 

For larger number of marbles, these ideas remain the same, we look for the value 
of 77 at which a real eigenvalue appears in X,, .  First, one can show the following 
recurrence relation for x, = det(X,, - A I ) ,  where I is the identity matrix: 

x,+(A + ~ ) x , - ~ + A Y ~ x , , - ~ = O  (10) 

where Y = (1  + 77)/2. With the conditions x, = -( 7) + A  ) and x2 = ( 7  + A ) ' -  2Av', the 
determinant can be writtenas: x , ,= r l+ r : ,where  r L = [ - ( A + T ) + J ( T + A ) ' - 4 A v ' ] / 2  
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are the solutions of equation ( lo ) ,  the form of which is x, = r“. The zeros of x, are 
then given by the solutions of ( r T / r - ) ”  = -1: 

r t  i 7 ~ ( 2 p +  1) 
r- 
_ -  0 < 2p + 1 d n. 

Then replacing re by their expression in equation ( l o ) ,  we obtain a set of second order 
polynomials in A :  

The eigenvalues A, are real if 7 E [0, v P ]  where 

7, = tan2 (t ( 1 - 2 p + 1  y) ) 
The first real eigenvalue to appear is: 

v2 = tan’(: (1 -+)) 
One can show that when the eigenvalues are real, we have A,- E [0, 71 and A,, E [ v,1], 
whereas / A p /  = 77 when they are complex. These properties imply that the marbles stick 
to the wall when t) < n 2 .  

Table 1 provides a comparison of given by this model and  by the simulation 
data. Note that the results of this model are also in agreement with those of the case 
11. For large n, we have q 2 ( n )  - 1 - r / n .  

In the case where the wall is replaced by a marble, the same treatment holds and  
the ‘critical’ value v2 becomes: vi(  n )  = tan2 (a.rr( 1 - 2 /n ) ) .  Note that, for large n, the 
values taken by v i  are very close to those given by v2 but for n/2 ,  i.e.: v i (  n) = v2( n/2).  

4.3. Evaluation of v3(n) for  identical masses 

The ‘critical’ value v 3 ( n )  is obtained when the number of waves No increases by 1 
from its elastic value n. This happens when U , (  7)  = U,. after n first waves (see figure 
1( b ) ,  (c)) .  The equation to solve is X i [ 2 ,  13 = 1. We found no evident analytical solution 
for this algebraic equation. Knowing that n2(n)  < q 3 ( n )  < q , ( n ) ,  we have obtained a n  
empirical fit, the form of which is similar to that of v2( n): v3( n )  = tan($.rr( 1 - a / n ) )  
where a is around 1.16. 

4.4. The relatiue kinetic energy in case 1 

It is possible to choose different final states for this study, depending on the stop test 
of the simulation. One can consider a first state ( A )  when no more collisions can occur 
in the marble aggregate (corresponding to rr) ,  another one is the state (C)  when no 
more collisions with the wall occur. The present study concerns the state ( B )  (U, > U, 
for all i ) ,  state which is intermediate to the two previous ones. In figure 1 are shown 
the times corresponding to these different stop tests. For each state is associated a 
different relative kinetic energy curve Ea.  The variations of E k ( n , 3 0 )  for the three 
states are plotted in figure 2. 
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-1 

- 2  

- 4  

rl 

Figure 2. Comparison of the log E ,  (7) curves for n = 30, ( E ,  in units of m, Vi),  in case 
I and for the three final states: state ( A )  (dotted line), state ( B )  ( fu l l  line), state (C)  (broken 
line) defined in section 4. 

Case ( A )  is well reproduced by the ICW model. One propagates the waves one after 
the other as long as it is possible, i.e., as long as the relative velocity of two consecutive 
marbles is negative, In this model, two consecutive colliding waves are replaced by 
only one wave and the initial separation distribution plays no role. Note that for 
v3 < 7 < 1, this curve is also reproduced by applying the (X , , )"  matrix, i.e., exactly n 
complete waves. 

< 1). This can 
be understood by analysing the collision timescales. In this regime the ejected marbles 
have almost the same velocities (see figure l ( a ) ) ,  which implies that their relative 
velocities are much smaller than their own velocities. The bounce duration r b  is of the 
order of re = n r / 2 ,  whereas the time t ,  =-&,/(U, - at which a future collision 
between ejected marbles will occur, is much larger and  consequently the stop test is 
the same for (B)  and (C) as long as rb < t , .  In terms of the ICW model, this is expressed 
by an n-wave matrix: the first wave X,, ejects the nth marble, the second one Xn-l 
ejects the ( n  - 1)th and  so on. The matrix which gives the final state, at 7) = 1, is 
T = X , X , .  . . X,, .  Curve ( C )  is reproduced by this matrix u p  to 7) = v3 where EL reaches 
its maximum. ( A ) ,  (B)  and (C)  fall on the same curve for 7 just less than v 3 .  The 
only parts of (B)  and (C)  curves which are not reproduced by the ICW model are 
those for 7 lying between v3 and v,. 

Cases (B) and (C) are identical in the quasi-elastic regime ( v 1  < 

4.5. The elastic relative kinetic energy in case I I  

It is remarkable that the variations of Ek are very close for both cases I and 11, except 
for 7 close to 1. In particular, the respective values of v ,  and v 2 ,  for each case, differ 
only by few per thousand (see table 1). However, when 7 approaches 1 the &(v) 
curves change completely. Indeed, in case I1 at  7 = 1 the velocities are not the same 
after the bounce so Ek is different from zero. Let us recall that the masses are given 
by m, = m , ( l +  86,) where 6, is a random number in [-1, 11. At 7) = 1, EA is not sensitive 
to the initial separation distribution as long as the mass dispersion parameter 6 is not 
too large. Then Ek is only a function of n and 6. 
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The final states ( B )  or ( C )  are given by applying the n-wave T matrix, whereas 
state (A)  is given by ( X , ) " ;  when applied to the initial condition where the plan 
velocity is V, and U,( t = 0) = 0, the final velocities are 

U, = 2 V,( 1 - 0.5 E S (  6, - tn-, ) )  + B( 8') 

where E = +1 (respectively -1 )  for ( B )  and (C)  (respectively ( A ) ) .  This implies that 
V,, = 2 V,( 1 + O ( S 2 ) )  and Ek reads E k (  n, 8) = f m ,  Vin8'cu + O( a4) where a = 1 if n is 
even and ( 1  - l / n )  if n is odd. In  table 1, one can see that the deviations from this 
first term arise for n8 > 1 .  

5. Conclusion 

We have shown that the simple model of independent collision waves is able to exhibit 
the main properties of a marble column bounce in the absence of external field. The 
quasi-elastic regime as well as the damped regime are reproduced by a simple ICW 

matrix formalism. This leads to computational times of orders of magnitude smaller 
than those given by a direct simulation, since no statistical average is needed to be 
done. The results can be summarized as follows: v2 is the value where the collision 
wave number diverges, v 1  is solution of U, = U,. after the first collision wave, whereas 
q3 is solution of u1 = U, after the nth wave. 

For large n, the predicted values of v1 and v2 vary similarly, and the maximum of 
the relative kinetic energy E k ( ~ ,  n )  is almost proportional to the marble number n. 
This suggests that Ek(  7, n )  can be deduced from a universal curve 9 using the following 
renormalization: 

Ek(7, n ) =  n g ( x )  where x = n(r l -  rl1(n)). (14) 

The functions 9 ( x ) ,  obtained from the numerical data, are plotted in figure 3 for 
n = 10, 50 and 100, for both cases I and 11. 

6 

2 

0 
-1 0 1 -1 0 1 

n lQ-%)  ,717 - r l , )  

Figure 3. Comparison of the reduced curves 9 ( x )  = E , ( v ,  n ) / n  as functions of 
x = n [ v  - v , ( n ) l ,  The left (respectively right) curves group corresponds to case I (respec- 
tively case 11) for n = 10 ( fu l l  line), n = 50 (broken line) and n = 100 (dotted line). 
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In case I and for large n, these curves converge towards a single one. This implies 
that changing 7 is equivalent to change n :  the relative kinetic energy per particle is 
the same as long as n (  7 - ql( n ) )  is the same, which reads (1 - 7 ) n  = constant for large 
n. Consequently, the properties of a one-dimensional marble column depend on the 
only parameter y = 4 n ,  where 9 = 1 - 7. Doubling the number of marbles has the same 
effect as having 4 divided by 2. This conclusion remains the same when the wall is 
replaced by a marble. In  case 11, the functions 9 ( x )  are the same as in case I in the 
region x < O( rl2 < 7 < vl), but are different in the quasi-elastic regime. 

We are presently investigating the effect of gravity on the dynamics of the same 
column that is free to bounce on a vibrating plan; a similar work, concerning one 
bouncing marble at 7 =0,  has been studied recently [9]. Except for the collision 
between the wall and the first marble, the properties of the collision waves are still valid. 
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